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Abstract The stability of chemical systems is discussed by using elementary concepts
of control theory, and Lyapunov stability theory. From these concepts, a mathemati-
cally clear definition of irreversible thermodynamic processes and equilibrium states
is established. Furthermore, it is shown that the extremum principles of classical ther-
modynamics can be obtained as natural consequences of the Lyapunov stability theory
application in usual physicochemical systems. It is also demonstrated that for the case
of chemical systems subject to more general physical conditions, it is possible to find
a scalar function dependent of macroscopic parameters that describes the evolution of
the system toward the equilibrium state. The aim of this work is to show that by using
variational methods one can discuss the stability of many chemical systems.

Keywords Variational methods · Non-equilibrium thermodynamics ·
Extremum principles in thermodynamics · Dilute electrolyte solutions

1 Introduction

Together with the second law of thermodynamics, the stability of chemical systems
has attracted attention of many chemists and chemical engineers along the years. By
the mid-1870s, Gibbs investigated the conditions that characterize the stable states of
a mixture of substances from Clausius’ enunciate for the second law. In his seminal
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work entitled “On the equilibrium of heterogeneous substances” [1], he introduced
important concepts of chemical thermodynamics, such as chemical potential, phase
rule, as well asmany inequalities that later were recognized as necessary conditions for
the thermodynamic stability of chemical systems at equilibrium [2,3]. In special,Gibbs
also deduced necessary and sufficient conditions for the stability of homogeneous
chemical systems with mass transfer in several experimental conditions.

Although Gibbs has not mentioned concepts inherent to the extremum principles in
his work, one recognizes that his assertions about stability of homogeneous chemical
systems are examples of application of variational methods in thermodynamics. In
fact, the stability criteria laid down by Gibbs for mixtures of substances subject to
adiabatic and isothermal processes are equivalent to those principles that nowadays
are known as extremum principles in classical thermodynamics.

On the other hand, the stability of more complex physicochemical systems, such
as supersaturated electrolyte solutions, colloidal dispersions, biochemical systems
etc., cannot be studied through the classical thermodynamics approach. This occurs
because in these systems there are gradients of concentration, temperature, and pres-
sure, they may be not at rest, and the processes to which the systems are submitted
are much more complex than those usually considered in classical thermodynamics.
Consequently, one should use fundamental concepts of variational methods to deduce
proper extremum principles to study the stability of such systems.

In this work, variational methods are employed to discuss the stability of chemical
systems. In Sect. 2, basic concepts of control theory are outlined. From these concepts,
amathematically clear definition of irreversible thermodynamic processes is provided.
In turn, in Sect. 3, the Lyapunov direct method [4,5] is used to find a scalar function
(Lyapunov candidate function) dependent of macroscopic parameters that describes
the evolution of a chemical system toward the equilibrium state. As an example,
one considers a dilute electrolyte solution, which was previously studied in [6]. The
Lyapunov direct methodwas chosen because, unlikemany variational methods, it does
not require the knowledge of a particular solution to study the stability of a system.
From the Lyapunov candidate function, one obtains the thermodynamic conditions
that characterize the equilibrium states of a dilute electrolyte solution under several
physicochemical conditions.

2 Irreversibility of thermodynamic processes

Although the existence of irreversible thermodynamic processes in nature is well-
accepted by everyone, the idea of irreversibility still remains as a qualitative concept.
As a consequence, chemists, physicists, and engineers employ the adjectives irre-
versible and dissipative as synonyms to exemplify processes that involve some loss of
energy not recoverable. Nonetheless, some attempts to provide a clear and mathemat-
ically coherent description of irreversible processes have been carried out since the
mid-19th century, when the first statements about the second law of thermodynamics
emerged [7,8]. In turn, modern mathematical descriptions of irreversible processes
appeared in the second half of the twentieth century through Giles’ and Willems’
works [9–11].
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The approach employed by Giles rests on a scale of irreversibility whereby one
compares the values of an irreversibility function for different processes. His argu-
ments are based on set theory and topology, as well as experimental evidences. On
the other hand, Willems’ approach stems from the foundations of control theory, an
interdisciplinary mathematical theory that deals with the behavior of physical systems
through the notion of inputs (causes, perturbations) and outputs (effects, responses).
According to it, a system Ω is regarded as an abstract object endowed with a mathe-
matical structure that maps inputs into outputs through a set of variables. Because in
this approach physical and chemical arguments are used only when one desires to par-
ticularize the obtained results, it is more general than the approach proposed by Giles.
Therefore, in this manuscript, the discussion about irreversibility of thermodynamic
processes will follow from Willems’ ideas.

In order to determine the conditions that result in the stability of a system in a given
environment,Willems proposed an inequality that allows to identify whether a process
is irreversible or not. For this purpose, he assumed that the past and current responses
of the system cannot be affected by future events, as expected in all experiments.
Moreover, he still supposed that the current state summarizes all past inputs applied
on the system. Incidentally, for future responses, it does not matter how the system
was brought into the current state. Once these constraints have been imposed on the
system, one can consider the below definition of irreversible processes. However, to
motivate the discussion about the irreversible nature of a thermodynamic process,
initially some basic, but very relevant remarks are outlined.

Firstly, in this manuscript, attention is focused on systems whose dynamics is given
by a set of differential equations of type

dx

dt
= f (x(t), u(t)), y = g(x(t), u(t)), (1)

where x(t) is an arbitrary property of the system, u(t) is the input control, y(t) is
the output control, and f (x, u) and g(x, u) are smooth functions. At equilibrium,
whenever u(t∗) = 0, such that f (x∗, 0) = 0 and g(x∗, 0) = 0, then x(t∗) = x∗. Such
a condition characterizes the equilibrium state of the system.

Moreover, by complying with the non-equilibrium thermodynamics approach, the
systems of interest are treated as continuous bodies whose properties are continu-
ous functions of space coordinates and time. Accordingly, all dynamic equations are
locally formulated, that is, the dynamic equations are given in terms of parameters
that refer to a single point in space at a given time t . This approach contrasts with
that employed by classical thermodynamics because in the latter physicochemical
variables are independent of the space coordinates and time.

Definition 1 Equilibrium state. Consider a system Ω . A state χ(t) = (Γ1(t), . . . ,
Γn(t)) of Ω is a n-tuple of time-dependent functions locally defined over Ω . In addi-
tion, in the equilibrium stateχ(t∗) = χ∗,Ω is at rest in relation to the inertial reference
frame κ , and the functions Γ (t) are uniform fields over Ω . Further constraints can be
also imposed in the equilibrium state by depending on the macroscopic characteristics
of Ω e.g. chemical equilibrium.
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Definition 2 Macroscopic extensive properties. Themacroscopic extensive properties
of Ω are given by integrals of type

Ψ (χ(t)) =
∫
V

ρ(·, t)ψ(·, t)dv, Υ (χ(t)) =
∫

∂V
φ(·, t)da, (2)

where V is a material region occupied by Ω in the three-dimensional Euclidean space
E with respect to some reference configuration κ, ∂V is the boundary of Ω,ρ(·, t) is
the mass density defined at a point belonging to Ω,ψ(·, t) and φ(·, t) are quantities
locally defined, and dv and da are the elements of volume and area, respectively.
Besides, ψ(·, t) is a density per unit mass of Ω , and φ(·, t) is a flux density per unit
surface area of Ω , whence Ψ (χ(t)) denotes a macroscopic volume quantity of Ω at
the time t , as well as Υ (χ(t)) denotes a macroscopic surface quantity of Ω at the
time t .

Definition 3 Irreversible process. Let χ(t) be the state of a system at the time t .
Assume also that the system is submitted to a thermodynamic process. This process is
irreversible in relation to the supply rateW(χ(t), u(t), y(t)), whenever the dissipation
inequality is satisfied,

Q(χ(t)) − Q(χ(t0)) ≤
∫ t

t0
W(χ(t), u(t), y(t))dt, (3)

whereQ(χ(t)) is a non-negative function called storage function ofΩ , and the integral
of the supply rate on the interval [t0, t] accounts for the minimum supply necessary
to bring Ω from an initial state χ(t0) to a final state χ(t) in the most efficient way.
Otherwise, a thermodynamic process is lossless or conservative in relation to the
supply rateW(χ(t), u(t), y(t)), if the following equality

Q(χ(t)) − Q(χ(t0)) =
∫ t

t0
W(χ(t), u(t), y(t))dt (4)

holds.

Hitherto, the discussion about irreversibility of a thermodynamic process is quite
general. However, one may use certain properties of the system to renderQ(χ(t)) and
W(χ(t)) well-determined physical meanings. For example, one may particularize the
discussion for physicochemical systemswhose supply rate includes only amechanical
power w(t), and a heat power q(t). Thus, from Eq. (4), one formulates the first law of
thermodynamics as

U (χ(t)) −U (χ(t0)) =
∫ t

t0
(w(t) + q(t))dt, (5)

where U (χ(t)) is the internal energy, such thatQ(χ(t)) = U (χ(t)), andW(χ(t)) =
w(t) + q(t). Note that, according to inequality (3), a process cannot be considered
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irreversible in relation toW(χ(t)) = w(t)+q(t). Then, in thismanuscript, the concept
of irreversibility rests on the considered kind of supply rate.

In turn, for the second law of thermodynamics, one needsmore information because
the storage function and the supply rate depend on the macroscopic characteris-
tics of system, as well as the kind of process to which the system is submitted.
For example, consider an isolated physicochemical system, which is submitted
to an irreversible process. Suppose also that the system is at rest. For this sys-
tem, the storage function should be identified as the entropy S(χ(t)). However,
while Q(χ(t)) is a lower bounded function, the entropy function S(χ(t)) is a
bounded function, so that the association between Q(χ(t)) and S(χ(t)) is not
straightforward. In order to clarify this aspect, one should recall that, according to
the third law of thermodynamics, the entropy function attains its minimum value
nearby the absolute zero. Indeed, by complying with the principle of maximum
entropy, the entropy function should assume its maximum value at equilibrium.
Conjointly, both the third law of thermodynamics and the principle of maximum
entropy bound the set of values of S(χ(t)) of an isolated physicochemical system at
rest.

Then, if one uses the mathematical properties of exponentially bounded positive-
semidefinite functions, for an isolated system, the functionsQ(χ(t)) andW(t) can be
respectively related to S(χ(t)) and q(t)/θ by the transformations

S(χ(t)) = c exp(−Q(χ(t))),
∫ t

t0

q(t)

θ
dt = c exp

(
−

∫ t

t0
W(t)dt

)
, (6)

where c is a positive constant, and θ is the absolute temperature. Hence, with Eq. (6),
inequality (3) results in

S(χ(t)) − S(χ(t0)) ≥
∫ t

t0

q

θ
(t)dt, (7)

which is the mathematical statement of the second law of thermodynamics for an
isolated physicochemical system at rest. However, note that for systems subject to
other physicochemical restrictions, Eq. (6) is no longer valid, and different expressions
relating storage functions and supply rates to thermodynamic quantities should be
found.

Furthermore, it should be emphasized that the use of transformations as shown
in Eq. (6) is very common in thermodynamics. In introducing Kelvin’s second
absolute scale of temperature, Truesdell [7] made use of a similar procedure to
obtain a scale of temperature independent of the kind of thermometric mater-
ial, without ever mentioning the existence of an ideal gas. For this purpose, he
used the mathematical properties of exponentially bounded positive-semidefinite
functions, and later he demonstrated that Kelvin’s second absolute scale of tem-
perature is definitely coherent with Clausius’ and Kelvin’s works [12,13] published
in 1853. Indeed, the exploitation of mathematical properties of an exponentially
bounded positive-semidefinite function is somewhat recurrent in quantum mechanics
[14].
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3 Lyapunov functions and stability of chemical systems

This section presents the stability criteria of an equilibrium state based on the concept
of distance function. Besides, it also exploits the Lyapunov direct method to predict
the stability of an equilibrium state of a dilute electrolyte solution.

3.1 Notions of stability implied by the Lyapunov theorem

Let a chemical system be in the equilibrium state occurring till an instant previous to
t = 0, say t−1 < 0. Suddenly, at t−1 the system experiences a change of concentration,
temperature, or pressure due to external sources, and then it leaves its equilibrium state.
However, as soon as the initial external conditions are restored at t = 0 andmaintained
at all future times t > 0, one can ask whether the chemical system will return to
its original equilibrium state. For example, one may admit that after a sufficiently
small perturbation, the states reached by the system will stay nearby the original
equilibrium state at all later times. Indeed, one may also consider that besides staying
in the neighborhood of χ∗, such perturbed states will eventually tend to the original
equilibrium state as time goes to infinity.

These hypotheses are physically well-motivated if one considers, for instance, the
motion of a simple gravity pendulum: one may impose a perturbation to a pendulum
originally at equilibrium, so that it starts oscillating with an amplitude ω. Then, if one
describes the motion of the pendulum by an idealized mathematical model, that is,
a weight on the end of a massless cord suspended by a pivot and subject to no air
drag and friction, the pendulum indefinitely oscillates with constant amplitude. But, if
one considers the dynamics of a real pendulum, that is, a weight on the end of a cord
with mass m suspended by a pivot and subject to air drag and friction, the oscillation
certainly declines as time goes, and the original equilibrium state is asymptotically
reached as time tends to infinity.

Mathematically, the stability criteria described above can be put in a more elegant
way by defining a metric for the thermodynamic state space [15,16]. For this purpose,
one needs to introduce (i) a proper distance function d that defines the distance between
two distinct states χ1(t) and χ2(t) belonging to the thermodynamic state space, (ii)
the class of perturbations that will be considered in such space, and (iii) the existence
of a function that indicates the system time evolution toward stability.

Definition 4 Stable state. An equilibrium state χ∗ is stable, if for every τ > 0 there
exists δ > 0, such that for the state χ0 occurring at time t = 0, the inequality

d(χ0, χ
∗) < δ (8)

implies

d(χ(t), χ∗) < τ ∀t ≥ 0. (9)

In other terms, the above inequalities mean that an equilibrium state is stable, if there
exists an upper bounded set of disturbances, such that by restoring the initial external
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Fig. 1 Universe of all possible states of a system. Region I includes non-equilibrium states, and region II
includes those equilibrium states where Definitions 4 and 5 do not apply. In turn, the region III represents
the stable states where Definition 5 does not apply, and finally region IV represents the asymptotically stable
states. The union of regions I, II, III, and IV comprises the set of all possible states of a system submitted
to an irreversible process. Similarly, the union of regions II, III, and IV is the set of all possible equilibrium
states, as well as the union of regions III and IV constitutes the set of all possible stable states

conditions the current state of system remains close to the τ -neighborhood of the state
χ∗ at all future times.

Definition 5 Asymptotically stable state. An equilibrium state χ∗ is asymptotically
stable, if χ∗ is stable in the sense of Definition 4, and there exists δ̃ > 0, such that the
inequality

d(χ0, χ
∗) ≤ δ̃ (10)

implies

d(χ(t), χ∗) → 0 t → ∞. (11)

Incidentally, the equilibrium state is said to be asymptotically stable, if it is stable,
and there exists an upper limited set of disturbances, so that by restoring the initial
external conditions the state of system converges to χ∗ as time tends to infinity.

Thus, according to the above definitions, every stable state is an equilibrium state.
Analogously, every asymptotically stable state is stable in the sense of Definition 4,
and also is an equilibrium state (Fig. 1). Nevertheless, from the practical point of view,
only the asymptotically stable states are thermodynamically relevant as the equilibrium
state is never rigorously reached. As a matter of fact, in thermodynamics one says that
a system reaches the equilibrium state, when changes in macroscopic parameters can
no longer be observed by the available measuring devices.

The definitions about the stable and asymptotically stable states of a physicochemi-
cal system tell us nothing about what happens during the temporal evolution of system
toward its stability. However, if the Lyapunov direct method is used, one can obtain
some conclusions about the system evolution in the direction to equilibrium state,
although the process that brings the system from χ(t) to χ∗ is not known.
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Definition 6 Lyapunov candidate function. Suppose that a system submitted to an
irreversible process possesses a stable state χ∗. A scalar-valued function L(χ(t)) is a
Lyapunov candidate function, if for every attainable irreversible process it holds the
following properties:

1. L(χ(t)) is a monotonically non-increasing function of time on a neighborhood of
χ∗;

2. L(χ(t)) is a continuous function at χ∗;
3. L(χ(t)) has a strong local minimum at χ∗. In other terms, χ∗ is a strong local

minimum of L(χ(t)), if

L(χ(t∗)) < L(χ(t)) ∀χ(t) ∈ N (χ(t∗), τ ),

where N (χ(t∗), τ ) is the set of feasible points contained within the τ -
neighborhood of χ(t∗).

As a consequence of Definition 6, on the τ -neighborhood of χ∗ the Lyapunov
candidate functions obey the inequality

d

dt
L(χ(t)) ≤ 0. (12)

In fact, Lyapunov candidate functions are of great relevance for stability problems
because from the time derivative of L(χ(t)) it is possible to test the stability of an
equilibrium state, according to the Lyapunov theorem [17]. Although the proof of
this theorem is omitted here because it can be easily found in several mathemati-
cal references (for example, see [4,5,18]), its physical implications are presented.
Nonetheless, prior note that by considering Q(χ(t)) sufficiently smooth, inequality
(3) may be rewritten as

d

dt
Q(χ(t)) ≤ W(χ(t), u(t), y(t)). (13)

Thus, whenever the supply rate is not positive in a sufficiently small neighborhood of
a stable state, the dissipation inequality is the Lyapunov inequality [expression (12)],
which can be regarded as a particular case of the former.

Theorem 1 Lyapunov theorem. Let χ∗ be a stable state of a system submitted to
an irreversible process. In the τ -neighborhood of χ∗, the system storage function is a
Lyapunov candidate function that satisfies inequality (12). An equilibrium state is said
to be stable, if dL(χ(t))/dt is negative semi-definite. In turn, an equilibrium state is
said to be asymptotically stable, if dL(χ(t))/dt is negative definite.

Usually, the Lyapunov candidate functions contain great physical significance. For
example, for a closed system at rest submitted to an adiabatic process, the Lyapunov
candidate function is symmetric to the logarithm of a monotonically non-decreasing
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function named entropy S(t). This function attains its strong local maximum at the
stable state, namely

d

dt
S(t) ≥ 0. (14)

In turn, for a closed system at rest submitted to an isothermal process, the Lya-
punov candidate function is given by a monotonically non-increasing function named
Helmholtz energy A(t). This function attains its strong local minimum at the stable
state, viz.

d

dt
A(t) ≤ 0. (15)

Moreover, note that inequalities (14) and (15) are the mathematical statements of
two well-known extremum principles in thermodynamics. Such principles and their
equivalent forms are used in thermodynamics to prove the stability of physicochemical
systems. In the next section, the Lyapunov direct method will be used to find the
thermodynamic conditions that ensure the stability of an equilibrium state of a dilute
electrolyte solution under several physicochemical conditions.

3.2 Stability of the equilibrium state of dilute electrolyte solutions

In order to study the stability of the equilibrium state of dilute electrolyte solutions,
one starts considering the governing dynamic equations of electrolyte solutions. These
equations were comprehensively discussed by Reis and Bassi [19]. Therefore, they
will be briefly outlined here.

Balance of mass concentration

d

dt

∫
V

ρξadv −
∫

∂V
ja · nda −

∫
V
cadv = 0 a = 1, . . . , n − 1, (16)

Balance of linear momentum

d

dt

∫
V

ρvdv −
∫

∂V
tda −

∫
V

ρbdv = 0, (17)

Balance of angular momentum

d

dt

∫
V
o ∧ ρvdv −

∫
∂V

o ∧ tda −
∫
V
o ∧ ρbdv = 0, (18)

Balance of energy

d

dt

∫
V

(
ρε + 1

2
ρv · v

)
dv −

∫
∂V

(v · t − h · n)da −
∫
V
(ρb · v + ρr)dv = 0,

(19)
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Balance of entropy

d

dt

∫
V

ρηdv +
∫

∂V
Φ · nda −

∫
V

ρσdv ≥ 0, (20)

where ξa is the mass concentration of a constituent a of the solution, being the index
n reserved for the solvent, ja is the diffusive flux of a constituent a,n is the outward
unit normal vector to the boundary ∂V, ca is the mass production of a constituent a
due to chemical reactions, v is the barycentric velocity of the solution, t is the surface
traction that is related to the stress tensor T by t = Tn,b is the body force, o is the
position vector with respect to the mass center of the solution, ε is the local internal
energy density, h is the heat flux vector, r is the energy source, η is the local entropy
density, Φ is the entropy flux vector, and σ is the entropy source.

Here, it was assumed that the angular momentum of solution is conserved, and the
solution is so diluted that its dynamics is given by the dynamics of the solvent. Thus,
only one balance equation of linear momentum, and one balance equation of internal
energy, both valid for the whole solution, are employed. Moreover, by complying with
Truesdell’s axiom of dissipation [20], the entropy production of each constituent of
solution may assume positive, negative or even null values, as long as the entropy
production of solution as a whole is non-negative.

To find the Lyapunov candidate function that describes the time evolution of a dilute
electrolyte solution toward the equilibrium state, one uses Eqs. (16)–(20) to obtain the
macroscopic extensive properties (see Definition 2), and the fact that the entropy flux
vector is given by Φ = h/θ − ∑n−1

a=1μaja/θ , where μa is the chemical potential of a
constituent a [6]. In addition, one assumes that the surface traction is associated to the
hydrostatic pressure by t = −pn. With these assumptions, one subtracts the balances
of energy and mass concentration from the balance of entropy in order to eliminate the
contributions of the heat and diffusive fluxes on the entropy flux. Then, the resulting
expression is

d

dt

∫
V

(
ρε+ 1

2
ρv · v−θρη+

n−1∑
a=1

ρξaμa

)
dv+

∫
∂V

(v · pn)da−
∫
V

n−1∑
a=1

caμadv ≤ 0.

(21)

Expression (21) may be further simplified if one initially recalls the theorem of
transport [21], theorem of divergence, and assumes that the motion of the solution is
isochoric, viz.

d

dt

∫
V
dv =

∫
V
div(v) =

∫
∂V

v · nda, V (t) =
∫
V
dv. (22)

Thus, by multiplying expression (22) by −p and subtracting it from expression (21),
the latter becomes

d

dt

∫
V

(
ρε + 1

2
ρv · v − θρη +

n−1∑
a=1

ρξaμa + p

)
dv −

∫
V

n−1∑
a=1

caμadv ≤ 0, (23)
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or yet,

d

dt

∫
V

ρ

(
ε + 1

2
v · v − θη +

n−1∑
a=1

ξaμa + p

ρ

)
dv −

∫
V

R∑
r=1

�rΛr dv ≤ 0, (24)

where
∑n−1

a=1caμa = ∑R
r=1�rΛr was used, such that �r is symmetric to the chemical

affinity of a reaction r , andΛr is the rate of conversion of r by supposing R independent
chemical reactions.

Chemical equilibrium

The discussion about the stability of a dilute electrolyte solution proceeds by impos-
ing that chemical equilibrium has been reached at all points of the solution. Hence,∫
V

∑R
r=1�rΛr dv = 0, and Eq. (24) becomes

d

dt

∫
V

ρ

(
ε + 1

2
v · v − θη +

n−1∑
a=1

ξaμa + p

ρ

)
dv ≤ 0, (25)

whence the Lyapunov candidate function is given by

L(t) =
∫
V

ρ

(
ε + 1

2
v · v − θη +

n−1∑
a=1

ξaμa + p

ρ

)
dv,

d

dt
L(t) ≤ 0. (26)

In this case, L(t) can be understood as a function that includes contributions arising
from the barycentric motion of the solution, mass concentration, temperature, and
pressure. Moreover, this Lyapunov candidate function is also valid for the case of a
non-reactive dilute electrolyte solution.

Solution at rest and chemical equilibrium

One specializes the above results for the case of a dilute electrolyte solution that is
at rest in relation to an inertial reference, and all chemical reactions are at chemical
equilibrium. With such constraints, Eq. (24) comes to

d

dt

∫
V

ρ

(
ε − θη +

n−1∑
a=1

ξaμa + p

ρ

)
dv ≤ 0, (27)

whence the Lyapunov candidate function is

L(t) =
∫
V

ρ

(
ε − θη +

n−1∑
a=1

ξaμa + p

ρ

)
dv,

d

dt
L(t) ≤ 0. (28)

Here, unlike the previous case, the Lyapunov candidate function includes only contri-
butions related to the mass concentrations of constituents of the solution, temperature,
and pressure.
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Homogeneous solution at rest and chemical equilibrium

In this particularization, one imposes further constraints on the solution. The dilute
electrolyte solution remains at rest in relation to an inertial reference and all chemical
reactions are at chemical equilibrium. However, now the solution is homogeneous
in relation to the mass concentration (absence of diffusive fluxes) of all constituents.
In order to clarify this point, one recalls Eq. (16). By imposing absence of diffusive
fluxes, one obtains

d

dt

∫
V

ρξadv −
∫
V
cadv = 0 a = 1, . . . , n − 1, (29)

according to which all changes in ξa are exclusively due to chemical reactions. But,
if chemical equilibrium is also imposed, then

∫
V cadv = 0, and Eq. (29) turns into

d

dt

∫
V

ρξadv = 0 a = 1, . . . , n − 1, (30)

whence one notices that the mass concentration of a constituent a remains constant.
However, note that, according to Eq. (16), the imposition of chemical equilibrium
with presence of diffusive fluxes is not sufficient to ensure Eq. (30). Besides, observe
that, in general, the imposition of chemical equilibrium together with absence of
diffusive fluxes usually leads to the homogeneity of solution with respect to the mass
concentration of the constituents, temperature, pressure, and other parameters that
affect the equilibrium constant of a reaction. Under such circumstances, the solution
presents a uniform temperature θ̂ and pressure p̂, and the equilibrium constant is
homogeneous. As amatter of fact, such a picture is similar to that employed in classical
thermodynamics to represent chemical systems.

Therefore, in view of the above considerations, it follows from Eq. (24) that

d

dt

∫
V

ρ

(
ε − θ̂η + p̂

ρ

)
dv ≤ 0. (31)

Equation (31) is an equivalent form of the principle of minimum energy for homoge-
neous chemical systems at rest and at chemical equilibrium. As usual, the Lyapunov
candidate function for this case is the Gibbs energy, viz.

L(t) =
∫
V

ρ

(
ε − θ̂η + p̂

ρ

)
dv,

d

dt
L(t) ≤ 0, (32)

which fully characterizes the behavior of solution in equilibrium over a wide range of
temperature, and pressure.

4 Concluding remarks

In this work, variational methods are used to discuss the stability of physicochemi-
cal systems, particularly dilute electrolyte solutions. By imposing several constraints
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on these solutions, one obtains different scalar-valued functions dependent of macro-
scopic parameters that describe the evolution of the system toward its stability. Indeed,
it was demonstrated that only when one imposes the homogeneity of the solution in
relation to the mass concentration of all constituents, mechanical rest, and chemical
equilibrium, the stability of dilute electrolyte solutions may be described by the Gibbs
energy. On the other hand, for all other cases, one can obtain Lyapunov candidate
functions not classically defined, but that tend to a strong local extremum. This shows
that stability criteria of classical thermodynamics cannot be uncritically used to study
the stability of chemical systems.

Although the Lyapunov direct method does not provide information about the
process used by the system to reach the equilibrium state, the method is very useful as
it allows to understand what happens with the system during the process. Furthermore,
the wide scope of the Lyapunov direct method allows that the stability of any chem-
ical system is studied. As a matter of fact, the study of stability of dilute electrolyte
solutions in this manuscript is a simple example of how Lyapunov direct method is
important to discuss the stability of chemical systems in physicochemical conditions
where the methods of classical thermodynamics are not applicable.
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